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I define a set of wave functions for SU�N� lattice antiferromagnets, analogous to the valence bond solid
states of Affleck et al. �Phys. Rev. Lett. 59, 799 �1987�; Commun. Math. Phys. 115, 477 �1988��, in which the
singlets are extended over N-site simplixes. As with the valence bond solids, the new simplex solid �SS� states
are extinguished by certain local projection operators, allowing one to construct Hamiltonians with local
interactions which render the SS states exact ground states. Using a coherent state representation, I show that
the quantum correlations in each SS state are calculable as the finite temperature correlations of an associated
classical model with N-spin interactions on the same lattice. In three and higher dimensions, the SS states can
spontaneously break SU�N� and exhibit N-sublattice long-ranged order as a function of a discrete parameter
which fixes the local representation of SU�N�. I analyze this transition using a classical mean field approach.
For N�2, the ordered state is selected via an “order by disorder” mechanism. As in the Affleck-Kennedy-
Lieb-Tasaki case, the bulk representations fractionalize at an edge, and the ground state entropy is proportional
to the volume of the boundary.
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I. INTRODUCTION

At the classical level, the thermodynamic properties of
ferromagnets and antiferromagnets are quite similar. Both
states break certain internal symmetries, whether they be dis-
crete or continuous, and often crystalline point group sym-
metries as well. Antiferromagnetism holds the interesting
possibility of frustration, which can lead to complex behav-
ior even at the classical level.

Quantum mechanics further distinguishes antiferromag-
netism as the more interesting of the two phenomena. Quan-
tum fluctuations compete with classical ordering, and many
models of quantum antiferromagnetism remain disordered
even in their ground states. The reason is that on the local
level, quantum antiferromagnets prefer distinctly nonclassi-
cal correlations in that they form singlets, which are super-
positions of classical states. For an S= 1

2 Heisenberg antifer-
romagnet on a bipartite lattice, theorems by Marshall2 and by
Lieb and Mattis3 rigorously prove that the ground state is a
total spin singlet: Stot=0. Any total singlet can be expanded
in a �nonorthogonal� basis of valence bonds, which are sing-
let pairs �ij��2−1/2��↑i↓ j�− �↓i↑ j�� extending between sites i
and j. The most probable singlets are between nearest neigh-
bors, which thereby take full advantage of the Heisenberg
interaction JSi ·S j and achieve a minimum possible energy
�0=− 3

4J for that particular link. Taking linear combinations
of such states lowers the energy, via delocalization, with re-
spect to any fixed singlet configuration; this is the basic idea
behind Anderson’s celebrated resonating valence bond
�RVB� picture.4 If one allows the singlet bonds to be long
ranged, such a state can even possess classical Néel order.5

Taking advantage of quantum singlets, one can construct
correlated quantum-disordered wave functions which are
eigenstates of local projection operators. This feature allows
one to construct a many-body Hamiltonian which renders the
parent wave function an exact ground state, typically with a
gap to low-energy excitations. Perhaps the simplest example
is the Majumdar-Ghosh �MG� model for an S= 1

2 spin chain,6

the parent state of which is given by alternating singlet
bonds, viz.,

∣
∣ Ψ

〉
=

∣
∣ · · · • • • • • • · · · 〉. �1�

The key feature to ��� is that any consecutive trio of sites
�n ,n+1,n+2� can only be in a state of total spin S= 1

2 ; there
is no S= 3

2 component. Thus, ��� is an eigenstate of the
projection operator

P3/2�n,n + 1,n + 2� = −
1

4
+

1

3
�Sn + Sn+1 + Sn+2�2, �2�

with zero eigenvalue, and an exact ground state for H
=J�nP3/2�n ,n+1,n+2�. As ��� breaks lattice translation
symmetry, a second �degenerate� ground state follows by
shifting ��� by one lattice spacing. Extensions of the MG
model to higher dimensions and to higher spin, where the
ground state is again of the Kekulé form, i.e., a product of
local valence bond singlets, were discussed by Klein.7

Another example is furnished by the valence bond solid
�VBS� states of Affleck et al. �Affleck-Kennedy-Lieb-Tasaki
�AKLT��.1 The general AKLT state is compactly written in
terms of Schwinger boson operators:8

���L;M�� = 	

ij�

�bi↑
† bj↓

† − bi↓
† bj↑

† �M�0� , �3�

which assigns m singlet creation operators to each link of a
lattice L. The total boson occupancy on each site is zM,
where z is the lattice coordination number; in the Schwinger
representation, this corresponds to 2S. Thus, a discrete fam-
ily of AKLT states with S= 1

2zM is defined on each lattice,
where M is any integer. The maximum total spin on any link
is then Sij

max=2S−M, and any Hamiltonian constructed out of
link projectors for total spin S� �2S−M +1,2S�, with posi-
tive coefficients, renders ���L ;M�� an exact zero-energy
ground state. The elementary excitations in these states were
treated using a single mode approximation �SMA� in Ref. 8.
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The ability of two spins to form a singlet state is a special
property of the SU�2� group. Decomposing the product of
two spin-S representations yields the well-known result

S � S = 0 � 1 � 2 � ¯ � 2S , �4�

and there is always a singlet available. If we replace SU�2�
by SU�3�, this is no longer the case. The representations of
SU�N� are classified by �N−1�-row Young tableaux
�l1 , l2 , . . . , lN−1� with lj boxes in row j and with l1� l2�¯

� lN−1. The product of two fundamental �1,0� representations
of SU�3� is

3

⊗
3

=
3

⊕
6

, �5�

which does not contain a singlet. One way to rescue the
two-site singlet for general SU�N� is to take the product of
the fundamental representation N with the antifundamental

N̄. This yields a singlet plus the �N2−1�-dimensional adjoint
representation. In this manner, generalizations of the SU�2�
antiferromagnet can be defined in such a manner that the
two-site valence bond structure is preserved, but only on
bipartite lattices.9,10

Another approach is to keep the same representation of
SU�N� on each site but to create SU�N� singlets extending
over multiple sites. When each site is in the fundamental
representation, one creates N-site singlets,

� �1¯�Nb�1

† �i1� ¯ b�N

† �iN��0� , �6�

where b�
†�i� creates a Schwinger boson of flavor index � on

site i. The SU�N� spin operators may be written in terms of
the Schwinger bosons as

S�
� = b�

†b� −
p

N
���, �7�

with Tr�S�=0, for the general symmetric �p ,0� representa-
tion. These satisfy the SU�N� commutation relations

�S�
�,S	


� = ��
S	
� − ��	S


� . �8�

Extended valence bond solid �XVBS� states were first dis-
cussed by Affleck et al. in Ref. 11. In that work, SU�2N�
states where N=mz were defined on lattices of coordination
number z, with singlets extending over z+1 sites. Like the
MG model, the XVBS states break lattice translation sym-
metry t and their ground states are doubly degenerate; they
also break a charge conjugation symmetry C, preserving the
product tC. In addition to SMA magnons, the XVBS states
were found to exhibit soliton excitations interpolating be-
tween the degenerate vacuums. More recently, Greiter and
Rachel12 considered SU�N� valence bond spin chains in both
the fundamental and other representations, constructing their
corresponding Hamiltonians and discussing soliton excita-
tions. Extensions of Klein models, with Kekulé ground states
consisting of products of local SU�N� singlets, were dis-
cussed by Shen13 and more recently by Nussinov and Ortiz.14

An SU�4� model on a two-leg ladder with a doubly degen-
erate Majumdar-Ghosh-type ground state has been discussed
by Chen et al.15

Shen also discussed a generalization of Anderson’s RVB
state to SU�N� spins as a prototype of a spin-orbit liquid
state.13 A more clearly defined and well-analyzed model was
recently put forward by Pankov et al.,16 who generalized the
Rokhsar-Kivelson quantum dimer model17 to a model of
resonating singlet valence plaquettes. Their plaquettes are
N-site SU�N� singlets �N=3 and N=4 models were consid-
ered�, which resonate under the action of the SU�N� antifer-
romagnetic Heisenberg Hamiltonian, projected to the valence
plaquette subspace. The models and states considered here
do not exhibit this phenomenon of resonance. Rather, they
are described by static “singlet valence simplex” configura-
tions. Consequently, their physics is quite different and in
fact simpler. For example, with resonating valence bonds or
plaquettes, one can introduce vison excitations18 which are
Z2 vortex excitations, changing the sign of the bonds or
plaquettes which are crossed by the vortex string.19 For sim-
plex �or plaquette� solids, there is no resonance, and the vi-
son does not create a distinct quantum state. The absence of
“topological quantum order” in the Klein and AKLT models
has been addressed by Nussinov and Ortiz.14

Here, I shall explore further generalizations of the AKLT
scheme, describing a family of “simplex solid” �SS� states on
N-partite lattices. While the general AKLT state is written as
a product over the links of a lattice L, with M singlet cre-
ation operators applied to a given link, the SS states, mutatis
mutandis, apply M SU�N� singlet operators on each N sim-
plex. Each site then contains an SU�N� spin whose represen-
tation is determined by M and the lattice coordination. Fur-
thermore, as is the case with the AKLT states, the SS states
admit a simple coherent state description in terms of classical
CPN−1 vectors. Their equal-time quantum correlations are
then computable as the finite temperature correlations of an
associated classical model on the same lattice. A classical
ordering transition in this model corresponds to a zero-
temperature quantum critical point as a function of M �which
is, however, a discrete parameter�. I argue that the ordered
SS states select a particular ordered structure via an “order
by disorder” mechanism. Finally, I discuss what happens to
these states at an edge, where the bulk SU�N� representation
is effectively fractionalized, and a residual entropy propor-
tional to the volume of the boundary arises.

II. SIMPLEX SOLIDS

Consider an N-site simplex � and define the SU�N� sin-
glet creation operator:

R�
† = � �1¯�Nb�1

† ��1� ¯ b�N

† ��N� , �9�

where i=1, . . . ,N labels the sites �i on the simplex. Any
permutation 
 of the labels has the trivial consequence of
R�

† →sgn�
�R�
† . Next, partition a lattice L into N-site sim-

plixes, i.e., into N sublattices, and define the state

���L;M�� = 	
�

�R�
†�M�0� , �10�

where M is an integer. Since each R�
† operator adds one

Schwinger boson to every site in the simplex, the total boson
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occupancy of any given site is p=�M, where � is the number
of simplixes associated with each site. For lattices such as
the Kagomé and pyrochlore systems, where two neighboring
simplixes share a single site, we have �=2. For the tripartite
triangular lattice, �=3. Recall that each site is in the �p ,0�
representation of SU�N�, with one row of p boxes.

Two one-dimensional examples are depicted in Fig. 1.
The first is defined on a two-leg zigzag chain. The chain is
partitioned into triangles, as shown, with each site being a
member of three triangles. Each triangle represents a simplex
� and accommodates one power of the SU�3� singlet creation
operator R�

† . Thus, for this state, we have N=3 and �=3.
With M =1 then, the local SU�3� representation on each site
is �3,0�, i.e., ���, which is ten dimensional. The M =1 case
is in fact a redrawn version of the state defined by Greiter
and Rachel in Eq. �52� of Ref. 12. For this state, a given link
may be in any of four representations of SU�3� or a linear
combination thereof:

10

⊗
10

=
10

⊕
27

⊕
35

⊕
28

.

�11�

Thus, the zigzag chain SU�3� SS state is an exact zero-
energy eigenstate of any Hamiltonian of the form

H =
�

�ij�
sides

J1 P (ij)

+
�

�ij�
zigzag

J2 P (ij) + J3 P (ij) ,

�12�

with positive coefficients J1, J2, and J3.
The SU�4� SS chain in Fig. 1 is topologically equivalent

to a chain of tetrahedra, each joined to the next along an
opposite side. Thus, �=2 and for the M =1 parent state, each
site is in the ten-dimensional �� representation. From

10

⊗
10

=
20

⊕
45

⊕
35

,

�13�
we can construct a Hamiltonian,

H =
�

�ij�
sides

J1 P (ij) +
�

�ij�
crosses

J4 P (ij)

+
�

�ij�
rungs

J2 P (ij) + J3 P (ij) ,

�14�
again with positive coefficients J1, J2, J3, and J4, which ren-
ders the wave function ��� an exact zero-energy ground
state. For both this and the previously discussed SU�3� chain,
the ground state is nondegenerate.

A. SU„N… Casimirs

For a collection of K spins, each in the fundamental of
SU�N�, we write

S�� = �
k=1

K

S�
��k� . �15�

From the spin operators S��, one can construct N−1 Ca-
simirs, C�n�= 1

n!Tr�Sn�, with n=2, . . . ,N. The eigenvalues of
C�n� for totally symmetric �� and totally antisymmetric ���
representations of p boxes were obtained by Kobayashi:20

C�n��h; � � =
h�N� 1��N� p�
n!Nn�N� p� 1�

���− 1�npn−1 + ��N� 1��N� p��n−1� .

�16�

The Casimirs can be used to construct the projectors onto a
given representation as a polynomial function of the spin
operators. In order to do so, though, we will need the eigen-
values for all the representations which occur in a given
product. Consider, for example, the case of three SU�3� ob-
jects, each in their fundamental representation. We then have

3

⊗
3

⊗
3

= •
1

⊕ 2 ·
8

⊕
10

.

�17�
The eigenvalues of the quadratic and cubic Casimirs are
found to be

C(2)(•) = 0 C(2)
( )

= 3 C(2)( ) = 6

C(3)(•) = −4 C(3)
( )

= 0 C(3)( ) = 8 .

,,,

,,

Therefore,

P•�ijk� = 2 − 2
3C�2� + 1

4C�3�, �18�

(ijk) = −2 + C(2) − 1
2
C(3),P �19�

FIG. 1. �Color online� Top: SU�3� SS state on a two-leg zigzag
chain. Each site is in the ten-dimensional totally symmetric repre-
sentation with three boxes �the red dots�. Bottom: SU�4� SS state on
a two-leg ladder of tetrahedra. Each site is in the ten-dimensional
totally symmetric representation with two boxes.
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P����ijk� = 1 −
1

3
C�2� +

1

4
C�3�. �20�

Expressing the projector P����ijk� in terms of the local spin
operators S�

��l�, I find

P����ijk� = 1 −
1

6
Tr�Sijk

2 � +
1

24
Tr�Sijk

3 �

= −
1

3
Tr�S�i�S�j� + S�j�S�k� + S�k�S�i��

+
1

8
Tr�S�i�S�j�S�k� + S�k�S�j�S�i�� −

2

27
.

�21�

The projector thus contains both bilinear and trilinear terms
in the local spin operators. One could also write the projector
in terms of the quadratic Casimir C�2� only as

P����ijk� =
1

18
C�2��C�2� − 3� . �22�

This, however, would result in interaction terms such as
Tr�S�i�S�j��Tr�S�j�S�k��, which is apparently quadratic in
S�j�. For the � representation, however, products such as
S�
��i�S	


�i� can be reduced to linear combinations of the spin
operators S�

��i�, as is familiar in the case of SU�2�. This
simplification would then recover the expression in Eq. �21�.

III. SS STATES IN dÐ2 DIMENSIONS

A. Kagomé lattice

The Kagomé lattice, depicted in Fig. 2, is a two-
dimensional network of corner-sharing triangles, with �=2.
It naturally accommodates a set of N=3 SS states. The sim-
plest example consists of SU�3� objects in the fundamental
representation at each site and places SU�3� singlets on all
the upward-pointing triangles �see Fig. 2�:

���� = 	
�

R�
† �0� . �23�

The lattice inversion operator I then generates a degenerate
mate, ����=I����. Both states are exact zero-energy eigen-
states of the Hamiltonian

H = �

ijk��120°

P����ijk� , �24�

where the sum is over all 120° trios �ijk�; there are six such
�ijk� trios for every hexagon. Since two of the three sites in
each trio are antisymmetrized, the fully symmetric ��� rep-
resentation is completely absent. This model bears obvious
similarities to the MG model: its ground state is a product
over independent local singlets; hence, there are no correla-
tions beyond a single simplex, and it spontaneously breaks a
discrete lattice symmetry �in this case I�.21

If we let the singlet creation operators act on both the up-
and down-pointing triangles, we obtain a state which breaks
no discrete lattice symmetries,

��� = 	
�

R�
† 	

�

R�
† �0� . �25�

For this state, each site is in the six-dimensional �� repre-
sentation. On any given link, then, there are the following
possibilities:

6

⊗
6

=
6

⊕
15

⊕
15

.

�26�

The fact that each link belongs to either an � or � simplex
and the fact that a singlet operator R�/�

† is associated with
each simplex mean that no link can be in the fully symmetric
���� representation. Thus, ��� is an exact, zero-energy
eigenstate of the Hamiltonian

H = �

ij�

P�����ij� . �27�

The states ����, ����, and ��� are depicted in Fig. 2.
The actions of the quadratic and cubic Casimirs on the

possible representations for a given link are given in the
following table:

FIG. 2. �Color online� SU�3� simplex solid states on the
Kagomé lattice. Applying the singlet operator R�

† to all the up
�down� triangles generates the state �������. Applying R�

† to all the
triangular simplixes generates the state ��� of Eq. �25�. The twofold
coordinated yellow sites at the top form a �10� edge �see Sec. VIII�.
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Repn C(2) C(3)

10/3 −80/27

16/3 64/27

28/3 352/27

Note that

C�2� =
8

3
C�2� −

320

27
�; �28�

hence, the two Casimirs are not independent here. We can,
however, write the desired projector,

P�����ij� =
1

24
C�2� −

10

3
�C�2� −

16

3
�

=
1

24
�Tr�S�i�S�j���2 +

7

36
Tr�S�i�S�j�� +

5

27
,

�29�

as a bilinear plus biquadratic interaction between neighbor-
ing spins. To derive this result, we write C�2�= 1

2Tr�S�i�
+S�j��2, where

C�2� = Tr�S�i�S�j�� + Tr�S2�

= Tr�S�i�S�j�� + p�N + p − 1� −
p2

N
. �30�

Next, consider the pyrochlore lattice in Fig. 3. This lattice
consists of corner-sharing tetrahedra, with �=2, and naturally
accommodates an N=4 SS state of the form

��� = 	
tetrahedra

R�
† �0� . �31�

Like the uniform SU�3� SS state on the Kagomé lattice, this
SU�4� state describes a lattice of spins which are in the ��
representation on each site; in the SU�4� case, this represen-
tation is ten dimensional. From Eq. �13�, we see that each
link, the sites of which appear in some simplex singlet cre-
ation operator, cannot have any weight in the 35-dimension-
al totally symmetric ���� representation. Hence, once
again, the desired Hamiltonian is that of Eq. �27�. For SU�4�,

C(2)
( )

= 6, C(2)
( )

= 8, C(2)
( )

= 12,

and so

P�����ij� =
1

24
�C�2� − 6��C�2� − 8�

=
1

24
�Tr�S�i�S�j���2 +

1

6
Tr�S�i�S�j�� +

1

8
.

�32�

Indeed, there is a rather direct correspondence between
the possible SU�3� SS states on the Kagomé lattice and the
SU�4� SS states on the pyrochlore lattice. For example, one
can construct a model with a doubly degenerate ground state,
similar to the MG model, by associating the simplex singlet
operators R�

† with only the tetrahedra which point along the
�111� lattice direction.

Finally, consider SU�4� states on the square lattice, again
in the �� representation on each site. We can once again
identify the exact ground state of the P�����ij� Hamiltonian
of Eq. �27�. In this case, the ground state is doubly degener-
ate and is described by the “planar pyrochlore” configuration
shown in Fig. 4.

IV. MAPPING TO A CLASSICAL MODEL

The correlations in the SS states are calculable using the
coherent state representation. From results derived in Appen-
dix A, the coherent state SS wave function is given by

���z̄�i��� = C	
�

�R�„z̄��1�, . . . , z̄��N�…�M , �33�

where C is a normalization constant, and

R� � z̄��1� ∧ z̄��2� ∧ ¯ ∧ z̄��N�

= � �1¯�Nz̄�1
��1� ¯ z̄�N

��N� . �34�

Here, I have labeled the N sites on each simplex � by an
index i running from 1 to N.

Note that the coherent state probability density is

FIG. 3. �Color online� The pyrochlore lattice and its quadripar-
tite structure.
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���2 = �C�2	
�

�R��2M , �35�

and that

�R��2 = � �1¯�N� �1¯�NQ�1�1
��1� ¯ Q�N�N

��N� , �36�

where Q���i�= z̄��i�z��i�. Writing ���2�e−Hcl/T, we see that
the probability density may be written as the classical Boltz-
mann weight for a system described by the classical Hamil-
tonian

Hcl = − �
�

ln �R��2 �37�

at a temperature T=1 /M.8,22 The classical interactions are
N-body interaction, involving the matrices Q���i� on all the
sites of a given N-site simplex, summed over all distinct
simplixes. For N=2, this results in a classical nearest-
neighbor quantum antiferromagnet,8 with

Hcl
AKLT = − �


ij�
ln1 − n̂i · n̂ j

2
� , �38�

with n̂=z†�z, where � is the vector of Pauli matrices. This
general feature of pair product wave functions of the Bijl-
Feynman, Laughlin, and AKLT forms is thus valid for the SS
states as well.

As shown in Appendix A, the matrix element 
��T̂K��� of
an operator

T̂K = �
m,n

�Tk,lb1
k1
¯ bN

kNb1
†l1

¯ bN
†lN �39�

may be computed as an integral with respect to the measure
d
 �on each site� of the product �̄�z���z̄� of coherent state
wave functions multiplied by the kernel

T̂K��b��,�b�
†�� →

�N − 1 + p + K�!
p!

T̂K��z��,�z̄��� . �40�

Thus, the quantum mechanical expectation values of Hermit-
ian observables in the SS states are expressible as thermal
averages over the corresponding classical Hamiltonian Hcl of
Eq. �37�. The SS and VBS states thus share the special prop-
erty that their equal-time quantum correlations are equivalent
to thermal correlations of an associated classical model on
the same lattice, i.e., in the same number of dimensions.

In this paper, I will be content to merely elucidate the
correspondence between quantum correlations in ���L ;M��
and classical correlations in Hcl. An application of this cor-
respondence to a Monte Carlo evaluation of the classical
correlations will be deferred to a future publication.

V. SINGLE MODE APPROXIMATION FOR
ADJOINT EXCITATIONS

Following the treatment in Ref. 8, I construct trial excited
states at wave vector k in the following manner. First, define
the operator

����k� = �
i

�i�i,���k� , �41�

�i,���k� = N−1/2�
R

eik·RS�
��R,i� , �42�

where R is a Bravais lattice site and i labels the basis ele-
ments. Here, �i is for the moment an arbitrary set of
complex-valued parameters and N is the total number of unit
cells in the lattice. The operators ����k� transform according
to the �N2−1�-dimensional adjoint representation of SU�N�.
Next, construct the trial state

��� � ����k���� �43�

and evaluate the expectation value of the Hamiltonian in this
state:

ESMA�k� =

��H���

����

=
�i

*f ij�k�� j

�i
*sij�k�� j

. �44�

Here, f ij�k� and sij�k� are, respectively, the oscillator strength
and structure factor given by

f ij�k� =
1

2

��†�i,��

† �k�,�H,� j,���k��‡��� , �45�

sij�k� = 
���i,��
† �k�� j,���k���� . �46�

Here, I have assumed that H is a sum of local projectors and
that H���=0. Treating the �i parameters variationally, one
obtains the equation

f ij�k�� j = ESMA�k�sij�k�� j . �47�

The lowest eigenvalue of this equation provides a rigorous
upper bound to the lowest excitation energy at wave vector
k. The result is exact if all the oscillator strength is saturated
by a single mode, hence the SMA label. When ��� is quan-

FIG. 4. �Color online� One of two doubly degenerate ground
states for the Hamiltonian of Eq. �27� applied to the square lattice,
where each site is in the �2,0,0� representation of SU�4�. The
squares with crosses �or, equivalently, tetrahedra� represent singlet
operators �����b�

†�i�b�
†�j�b�

†�k�b�
†�l� on the simplex �ijkl�. The re-

sulting planar pyrochlore configuration is equivalent to a checker-
board lattice of tetrahedra.
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tum disordered, the SMA spectrum is gapped. When ���
develops long-ranged order �for sufficiently large M param-
eter and in d�2 dimensions�, the SMA spectrum is gapless.

VI. MEAN FIELD TREATMENT OF QUANTUM
PHASE TRANSITION

The classical Hamiltonian of Eq. �37� exhibits a global
SU�N� symmetry, where z��i�→U���z���i� for every lattice
site i. Since the interactions are short ranged, there can be no
spontaneous breaking of this symmetry in dimensions d�2.
In higher dimensions, the classical model can order at finite
temperature, corresponding to a quantum ordering at a finite
value of m. For the AKLT states, where N=2, this phase
transition was first discussed in Ref. 8. I first discuss the N
=2 case and then generalize to arbitrary N�2.

A. N=2: valence bond solid states

Consider the N=2 case, which on a lattice of coordination
number z yields a family of wave functions describing S
= 1

2 Mz objects with antiferromagnetic correlations. These are
the AKLT VBS states. We have

z =� cos�
2
�

sin�
2
�ei��, Q =

1

2
1 + nz n+

n− 1 − nz � , �48�

where n=z†�z is a real unit vector �� are the Pauli matri-
ces�. Since

��1�1��2�2Q�1�1
��A�Q�2�2

��B� =
1

2
�1 − n̂A · n̂B� , �49�

the effective Hamiltonian is

Hcl = − �

ij�

ln1 − n̂i · n̂ j

2
� . �50�

The sum is over all links on the lattice. I assume that the
lattice is bipartite, so each link connects sites on the A and B
sublattices. I now make the mean field ansatz

n̂A = m + �n̂A, n̂B = − m + �n̂B �51�

and expand H in powers of �n̂i. Expanding to lowest non-
trivial order in the fluctuations �n̂i, we obtain a mean field
Hamiltonian

HMF = E0 − hA�
i�A

n̂i − hB�
j�B

n̂ j , �52�

where E0 is a constant and

hA = − hB =
zm

1 + m2 �53�

is the mean field. Here, z is the lattice coordination number.
The self-consistency equation is then

m = 
n̂A� =� dn̂ n̂ ehA·n̂/T�� dn̂ ehA·n̂/T, �54�

which yields

m = coth � −
1

�
, � =

z

T

m

1 + m2 . �55�

The classical transition occurs at Tc
MF= 1

3z, so the VBS state
exhibits a quantum phase transition at Mc

MF=3z−1. For M
�Mc, the VBS exhibits long-ranged two-sublattice Néel or-
der. On the cubic lattice, the mean field value Mc

MF= 1
2 sug-

gests that all the square lattice VBS states, for which the
minimal spin is S=3 �with M =1�, are Néel ordered. Since
the mean field treatment overestimates Tc due to its neglect
of fluctuations, I conclude that the true Mc is somewhat
greater than 3z−1, which leaves open the possibility that the
minimal M =1 VBS state on the cubic lattice is a quantum-
disordered state. Whether this is in fact the case could be
addressed by a classical Monte Carlo simulation.

B. N�2: simplex solid states

For general N, I write

Q���i� = 
Q���i�� + �Q���i� , �56�

where the average is taken with respect to ���2=e−Hcl/T. To
maximize ���2, i.e., to minimize Hcl, choose a set �P��

� � of N
mutually orthogonal projectors, with �=1, . . . ,N. The pro-
jectors satisfy the relations

P�P�� = ����P
� �57�

and can each be written as

P��
� = �̄�

���
�, �58�

where ���� is a set of N mutually orthogonal CPN−1 vectors.
Then, if z����=�� for each site �� in the simplex, we have
R�=ei�, where � is an arbitrary phase, and �R��2=1. One
then writes

Q��
� � 
Q������� =

1

N
��� + mP��

� −
1

N
���� . �59�

Here, m� �0,1� is the order parameter, analogous to the
magnetization. When m=0, no special subspace is selected,
and the correlations are isotropic. When m=1, the Q matrix
is a projector onto the one-dimensional subspace defined by
��. Note that 
TrQ�����=1, as it must be.

At this point, there remains a freedom in assigning the
vectors ���� to the sites ���� of each simplex. Consider, for
example, the N=3 case on the Kagomé or triangular lattice.
The lattice is tripartite, so every A sublattice site has two
�Kagomé� or three �triangular� nearest neighbors on each of
the B and C sublattices. However, as is well known, the
individual sublattices may have lower translational symme-
try than the underlying triangular Bravais lattice. Indeed, the
sublattices may be translationally disordered. I shall return to
this point below. For the moment, it is convenient to think in
terms of N sublattices, each of which has the same discrete
symmetries as the underlying Bravais lattice.

Expanding Hcl to lowest order in the fluctuations �Q���i�
on each site and dropping terms of order ��Q�2 and higher, I
obtain the mean field Hamiltonian
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HMF = E0 − ��
i

h���i�Q���i� , �60�

where E0 is a constant. The mean field h���i� is site depen-
dent. On a �N site, we have

h�N�N

�N� =
� �1�2¯�N� �1�2¯�NQ�1�1

�1�
¯ Q�N−1�N−1

�N−1�

� 
1¯
N� 	1¯	NQ
1	1

�1�
¯ Q
N	N

�N� . �61�

In Appendix B, I show that

h��
� = �AN�m���� + BN�m�P��

� � �RN�m� , �62�

where

AN�m� = �N − 2�!�
j=0

N−2
N − j − 1

j!
mj1 − m

N
�N−j−1

, �63�

BN�m� = �N − 2�!�
j=0

N−2
mj+1

j!
1 − m

N
�N−j−2

, �64�

RN�m� = N!�
j=0

N
mj

j!
1 − m

N
�N−j

. �65�

Note that BN�0�=0, BN�1�=1, and R�1�=1.
The mean field Hamiltonian is then

HMF = − �
i

Tr„ht�i�Q�i�… = − �BN�m��
i

��†�i�z�i��2,

�66�

where h���i�=h��
��i�, where ��i� labels the projector associ-

ated with site i. The self-consistency relation is obtained by
evaluating the thermal average of Q���i�. With x���z��2, I
obtain

1

N
+

N − 1

N
m =

�
0

1

dx x �1 − x�N−2 exp„�bN�m�x/T…

�
0

1

dx �1 − x�N−2 exp„�bN�m�x/T…
,

�67�

where bN�m�=BN�m� /RN�m�. It is simple to see that m=0 is
a solution to this mean field equation. To find the critical
temperature Tc, expand the right hand side in powers of m
for small m. To lowest order, one finds

bN�m� =
N

N − 1
m + O�m2� . �68�

The value of Tc
MF is determined by equating the coefficients

of m on either side of the equation. I find

Mc
MF�N,�� =

1

Tc
MF�N,��

=
N2 − 1

�
. �69�

This agrees with our previous result Mc
MF= 1

2 for the N=2
state on the cubic lattice, for which �=6. The N=3 SS on the
Kagomé lattice cannot develop long-ranged order which

spontaneously breaks SU�N� owing to the Mermin-Wagner
theorem. For the N=4 SS on the pyrochlore lattice, our mean
field theory analysis suggests that the SS states are quantum
disordered up to M � 15

2 . Note that the expression for Mc
MF

reflects a competition between fluctuation effects, which fa-
vor disorder, and the coordination number, which favors or-
der. The numerator, N2−1, is essentially the number of di-
rections in which Q can fluctuate about its average Q; this is
the dimension of the Lie algebra SU�N�.

VII. ORDER BY DISORDER

At zero temperature, the classical model of Eq. �37� is
solved by maximizing �R��2 for each simplex �. This is ac-
complished by partitioning the lattice L into N sublattices,
such that no neighboring sites are elements of the same sub-
lattice. One then chooses any set of N mutually orthogonal
vectors ���CPN−1 and set zi=���i�. On every N-site sim-
plex, then, each of the �� vectors will occur exactly once,
resulting in �R��2=1, which is the largest possible value.
Thus, the model is unfrustrated, in the sense that every sim-
plex � is fully satisfied by the zi assignments, and the energy
is the minimum possible value: E0=0.

For N=2, there are two equivalent ways of partitioning a
bipartite lattice into two sublattices. For N�2, there are, in
general, an infinite number of inequivalent partitions, all of
which have the same ground state energy E0=0. At finite
temperature, though, the free energy of these different order-
ings will, in general, differ due to the differences in their
respective excitation spectra. A particular partition may then
be selected by entropic effects. This phenomenon is known
as order by disorder.23–25

To see how entropic effects might select a particular par-
titioning, I derive a nonlinear � model by expanding Hcl
about a particular zero-temperature ordered state. Start with

z�i� = ���i��1 − �i
†�i�1/2 + �i, �70�

where �i
†���i�=0. We may now expand

�R��2 = �� �1¯�Nz�1
��1� ¯ z�N

��N��2

= 1 −
1

2�
i,j

��i
†���j� + ���i�

† � j�2 + ¯ . �71�

Thus, the “low temperature” classical Hamiltonian is

HLT = �

ij�

��i
†���j� + ���i�

† � j�2 + ¯ , �72�

where the sum is over all nearest-neighbor pairs on the lat-
tice. The full SU�N� symmetry of the model is of course not
apparent in Eq. �72� since it is realized nonlinearly on the �i
vectors.

Each �i vector is subject to a nonholonomic constraint,
�i

†�i�1. To solve for the thermodynamics of HLT, I will
adopt a simplifying approximation, in which there is just one
nonholonomic constraint, �i�i

†�i�N, where N is the num-
ber of sites in the lattice. I fix the constraint by introducing
an auxiliary variable � and demanding
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N���2 + �
i

�i
†�i = N , �73�

which I enforce with a Lagrange multiplier �. The resulting
model is

HLT = �

ij�

��i
†���j� + ���i�

† � j�2 + �N���2 + �
i

�i
†�i − N� .

�74�

The local constraints �i
†���i�=0 are retained.

It is convenient to rotate to a basis where ��
�=��,�, in

which case ���i�
† � j =� j,��i�, i.e., the ��i� component of the

vector �i. As long as ��i����j� for nearest neighbors i and
j, the local constraints have no effect on the Hamiltonian. We
are then left with a Gaussian theory in the �i vectors. Leav-
ing the constraint term aside for the moment, we can solve
for the spectrum of the first part of HLT. From this spectrum,
we compute the density of states per site, g���. The free
energy per site is then

F

N
= − � + ����2 + T�

0

�

d�g���ln� + �

T
� . �75�

Since N is thermodynamically large, we can extremize with
respect to � to find the saddle point, yielding

1 = ���2 + T�
0

�

d�
g���
� + �

. �76�

Setting �=�=0, I obtain an equation for Tc,

Tc = ��
0

�

d�
g���
� �−1

. �77�

For T Tc, there is Bose condensation, and ���2�0. For T
�Tc, the system is disordered. I stress that the disordered
phase, described in this way, does not reflect the SU�N� sym-
metry which must be present owing to the truncation in Eq.
�72�.

A natural setting to investigate the order by disorder
mechanism would be the SU�4� SS model on the pyrochlore
lattice. I defer this analysis, together with a companion
Monte Carlo simulation, to a later publication. Here, I will
provide a simpler analysis of the SU�3� Kagomé SS. Since
the Mermin-Wagner theorem precludes spontaneous break-
ing of SU�3� in two dimensions, this analysis at best will
reveal which correlations should dominate at the local level.
The two structures I wish to compare are the Q=0 structure,
depicted in Fig. 5, and the �3��3 structure, depicted in Fig.
6. Here, the A, B, and C sites correspond to CP2 vectors,

�A = �1

0

0
�, �B = �0

1

0
�, �C = �0

0

1
� . �78�

Both the Q=0 and �3��3 structures are unfrustrated, in the
sense that the interactions are fully satisfied on every sim-
plex; �R��2=1 for all �. Entropic effects, however, should
favor one of the two configurations.

The Q=0 structure may be regarded as a triangular Bra-
vais lattice with a three element basis �e.g., a triangular lat-
tice of up triangles�. Each triangular simplex contains three
� vectors, each of which has two independent components
�neglecting for the moment the global constraint�. By solving
for the spectrum in the absence of the constraint, one finds
six branches:

�l,��k� = 2� 2 cos1

2
k · al� , �79�

where k is a vector in the Brillouin zone, and the direct
lattice vectors are

a1 = a�1,0�, a2 = a1

2
,
�3

2
� , �80�

with a3=a2−a1. This results in a free energy per site of

f�T� = − ��T� +
T

�
�

0

�

d� ln��T� + 2 + 2 cos �

T
� , �81�

with

FIG. 5. �Color online� The Q=0 structure on the Kagomé
lattice.

FIG. 6. �Color online� The �3��3 structure on the Kagomé
lattice.
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��T� = �4 + T2 − 2. �82�

For the �3��3 structure, the underlying lattice is again
triangular but now with a nine element basis �see Fig. 6�. The
Hamiltonian HLT is then purely local, and there is no disper-
sion. The density of states per site is found to be

g��� =
1

6
���� +

1

3
��� − 1� +

1

3
��� − 3� +

1

6
��� − 4� .

�83�

The free energy per site is

f�T� = 2 − u�T� +
1

6
T ln �u2�T� − 4��u2�T� − 1�2

T6 � , �84�

with u�T����T�+2, satisfying

1

T
=

u�u2 − 3�
�u2 − 1��u2 − 4�

. �85�

Our results are plotted in Fig. 7. One finds at all tempera-
tures T�0 that

f�3��3�T� fQ=0�T� , �86�

suggesting that the local correlations should be better de-
scribed by the �3��3 structure.

VIII. AT THE EDGE

With periodic boundary conditions applied, the transla-
tionally invariant AKLT states are nondegenerate. On sys-
tems with a boundary, the AKLT models exhibit completely
free edge states, described by a local spin Se on each edge
site which is smaller than the bulk spin S. The energy is
independent of the edge spin configuration; hence, there is a
ground state entropy �2Se+1�kB ln Ne, where Ne is the num-

ber of edge sites. As one moves away from the AKLT point
in the space of Hamiltonians, the degeneracy is lifted and the
edge spins interact.

The existence of weakly interacting S= 1
2 degrees of free-

dom at the ends of finite S=1 Heisenberg chains was first
discussed by Kennedy,26 who found numerically an isolated
quartet of low-energy states for a one-parameter family of
S=1 antiferromagnetic chains. These four states are arranged
into a singlet and a triplet, corresponding to the interaction of
two S= 1

2 objects. The spin quantum number of the ground
state alternates with chain length L: singlet for even L and
triplet for odd L. The singlet-triplet splitting was found to
decay exponentially in L as exp�−L /!�, where ! is the spin-
spin correlation length. Thus, for long chains, the S= 1

2 ob-
jects at the ends are independent. Experimental evidence for
this picture was adduced from electron spin resonance �ESR�
studies of the compound NENP �Ni�C2H8N2�2NO2ClO4�.27

The situation for the linear chain and for the �10� and �11�
edges on the square lattice is depicted in Fig. 8. Recall that
each link in the AKLT model supplies one Schwinger boson
to each of its termini. The spin on any site is given by half
the total Schwinger boson occupation: S= 1

2 �b↑
†b↑+b↓

†b↓�.
Consider first the M =1 AKLT state of Eq. �3� on the linear
chain. The bulk sites have total boson occupancy n=2
�hence, S=1�, while the end sites have n=1 �hence, S= 1

2 �. If
the end sites are also to have S=1, they must each receive an
extra Schwinger boson of either spin �↑ or ↓�. Thus, the end
sites are described by an effective S= 1

2 degree of freedom.
Each of these four states is an exact ground state for the
AKLT Hamiltonian, written as a sum over projection opera-
tors for total bond spin Sn,n+1=21.

Consider next the square lattice with M =1, for which the
bulk spin is S=2. For a �10� edge, the edge sites are threefold
coordinated, and each is “missing” one Schwinger boson.
The freedom in supplying the last Schwinger boson corre-
sponds once again to an S= 1

2 object at each edge site. Along
the �11� edge, the sites are twofold coordinated and must
each accommodate two extra bosons, corresponding to S=1.

FIG. 7. �Color online� Free energy for SU�3� simplex solid
states on the Kagomé lattice. Dashed �red�: Q=0 structure. Solid
�blue�: �3��3 structure.

FIG. 8. �Color online� �a� Edge states for the linear chain. �b�
�10� edge sites for the square lattice. �c� �11� edge sites for the
square lattice. For the AKLT states, there is an effective free spin of
length Se= 1

2 M�z−ze� on the edge sites �see text�.
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The general result for the edge spin Se is clearly

Se =
1

2
M�z − ze� , �87�

where z and ze are the bulk and edge coordination numbers.
I stress that the edge spin configurations are completely de-
generate at the AKLT point, since all the internal links are
satisfied, i.e., annihilated by the local projector�s� in the cor-
responding AKLT Hamiltonian. Moving off of the AKLT
point, in the direction of the Heisenberg model, the edge
spins will interact. Based in part on Kennedy’s results, I con-
clude that the S= 1

2 chain along the �10� edge is antiferromag-
netic, while the S=1 chain along the �11� edge is ferromag-
netic �since consecutive edge sites are connected through an
odd number of bulk sites�.

By deriving and analyzing lattice effects in the spin path
integral for the Heisenberg model, i.e., tunneling processes
which have no continuum limit and which do not appear in
the effective nonlinear sigma model, Haldane28 argued that
Heisenberg antiferromagnets with 2S=0 mod 4 on the square
lattice should have nondegenerate bulk ground states. This
result was generalized by Read and Sachdev,29 who, building
on an earlier large-N Schwinger boson theory,30 extended

Haldane’s analysis to SU�N� for �N , N̄� models on bipartite
lattices. This established a connection to the AKLT states,
which are nondegenerate in the bulk and which exist only for
S=2M on the square lattice.

For the simplex solids, a corresponding result holds. Re-
call the N=3, M =1 model on the Kagomé lattice, where
each site is in the fully symmetric, six-dimensional �� rep-
resentation, whose wave function ��� is given in Eq. �25�.
Along a �10� edge, as in Fig. 2, the edge sites each belong to
a single simplex. Hence, they are each deficient by one
Schwinger boson. The freedom to supply this missing boson
on each edge site is equivalent to having a free edge spin in
the fundamental representation at every site. Thus, as in the
SU�2� AKLT case, the bulk SU�N� representation is “frac-
tionalized” at the edge. The � objects along the edge are of
course noninteracting and degenerate for the SS projection
operator Hamiltonian. For general SU�N� models which are
in some sense close to the SS model, these objects will in-
teract.

The determination of the interacting boundary Hamil-
tonian is somewhat tedious. First, one should fix a model
which is parametrically close to the SS projection operator
Hamiltonian. A natural choice is

H = H0
SS + ��


ij�
Tr�S�i�S�j�� , �88�

where HSS
0 is the projection operator Hamiltonian which an-

nihilates the bulk SS state along with its associated manifold
of edge states and where the sum is over nearest-neighbor
pairs. Since there is a bulk excitation gap for HSS

0 , we con-
sider a restricted basis consisting of the degenerate edge
states ���� of the unperturbed SS Hamiltonian. By writing
H=H0

SS+�H1, the energy levels in this restricted basis are
obtained by solving

det�� 
 �� � H1 � �� � − E 
 �� � �� � � = 0. �89�

For the �10� edge of the S=2 VBS model on the square
lattice, the low-lying edge states are described in terms of an
S= 1

2 object on each edge site. Choosing basis states which
are eigenstates of Sz, we can label the edge states by the
locations of the Sz= + 1

2 spins, i.e., in the state �n1 ,n2 , . . . ,nK�,
the boundary spins with Sz= + 1

2 are located at n1, n2, etc.,
and all other boundary spins have Sz=− 1

2 . The difficulty lies
in the fact that this basis, while complete for the degenerate
ground states of HVBS

0 , is not orthogonal. There will be a
finite overlap between any two such states with the same
value of Stotal

z . To be sure, overlaps such as

n1 ,n2 ,n3 �n1� ,n2� ,n3�� can be written as sums of terms which
each decay exponentially with the distances �ni−nj��. Still, the
boundary Hamiltonian will formally involve multisite inter-
actions and any reduction to a nearest-neighbor Heisenberg-
type model will entail several approximations.

IX. CONCLUSIONS

I have described here a natural generalization of the
AKLT valence bond solid states for SU�2� quantum antifer-
romagnets. The new simplex solid states ���L ;M�� are de-
fined by the application of N-site SU�N� singlet creation op-
erators R�

† to N-site simplixes � of a particular lattice. For
each lattice, a hierarchy of SS states is defined, parametrized
by an integer M, which is the number of singlet operators per
simplex. The SS states admit a coherent state description in
terms of CPN−1 variables, and using the coherent states, one
finds that the equal-time correlations in ���L ;M�� are
equivalent to the finite temperature correlations of an associ-
ated classical CPN−1 spin Hamiltonian Hcl and on the same
lattice. The fictitious temperature is T=1 /M, and a classical
ordering at Tc corresponds to a quantum phase transition as a
function of the parameter M. This transition was investigated
using a simple mean field approach. I further argued that for
N�2, the ordered structure is selected by an order by disor-
der mechanism, which, in the classical model, amounts to an
entropic favoring of one among many degenerate T=0 struc-
tures. I hope to report on classical Monte Carlo study of Hcl
on Kagomé �N=3� and pyrochlore �N=4� lattices in a future
publication; there, the coherent state formalism derived here
will be more extensively utilized. Finally, a kind of fraction-
alization of the bulk SU�N� representation at the edge was
discussed.

ACKNOWLEDGMENTS

This work grew out of conversations with Congjun Wu, to
whom I am especially grateful for many several stimulating
and useful discussions. I thank Shivaji Sondhi �who sug-
gested the name “simplex solid”� for reading this paper and
for many insightful comments. I am indebted to Martin Gre-
iter and Stephan Rachel for a critical reading of this paper,
and for several helpful suggestions and corrections. I also
gratefully acknowledge discussions with Eduardo Fradkin.

SIMPLEX SOLID STATES OF SU�N� QUANTUM… PHYSICAL REVIEW B 77, 104404 �2008�

104404-11



APPENDIX A: PROPERTIES OF SU„N… COHERENT
STATES

1. Definition of SU„N… coherent states

Consider the fully symmetric representation of SU�N�
with p boxes in a single row �I call the p representation� of
dimension � N+p−1

p
�. Define the state

�z;p� =
1

�p!
�z1b1

† + ¯ + zNbN
† �p�0� , �A1�

where z�CPN−1 is a complex unit vector, with z†z=1. In
order to establish some useful properties regarding the
SU�N� coherent states, it is convenient to consider the un-
normalized coherent states

�z,!� = exp�!z
b

† ��0� = �

p=0

�
!p

�p!
�z;p� . �A2�

Clearly, �z ,!� is a product of N �un-normalized� coherent
states for the N Schwinger bosons. One then has

�z,!�z�,!�� = exp�!̄!�z†z�� = �
p=0

�
�!̄!�p

p!

z;p�z�;p� . �A3�

Equating the coefficients of �!̄!�p, one obtains the coherent
state overlap


z;p�z�;p� = �z†z��p. �A4�

2. Resolution of identity

Define the measure

d
 = 	
j=1

N
d Re�zj�d Im�zj�

�
��z†z − 1� . �A5�

Next, consider the expression

P�!, !̄� =� d
 �z,!��z,!� = �
n1¯nN

�!̄!��jnj

	
j
nj!

In1¯nN

N �n�
n�

= �
p=0

�
�!̄!�p

p!
� d
 �z;p�
z;p� , �A6�

where �n�= �n1 , . . . ,nN� and

In1¯nN

N � �
0

1

dx1 ¯ �
0

1

dxN ��
j=1

N

xj − 1�	
j=1

N

xj
nj . �A7�

Here, xj = �zj�2. If we define xj = �1−xN�yj for j=1, . . . ,N−1,
then by integrating over xN, one obtains the result

In1¯nN

N = In1¯nN−1

N−1 �
0

1

dxN xN
nN�1 − xN�N−2+�j=1

N−1nj

=

nN!N − 2 + �
j=1

N−1

nj�!

N − 1 + �
j=1

N−1

nj�!

In1¯nN−1

N−1

=
n1! ¯ nN!

�N − 1 + n1 + ¯ + nN�!
. �A8�

Thus, equating the coefficient of �!̄!�p in Eq. �A6�, one ar-
rives at the result

1p =
�N − 1 + p�!

p!
� d
 �z;p�
z;p� , �A9�

where the projector onto the p representation is

1p � �
n1¯nN

�p,�jnj
�n�
n� . �A10�

3. Continuous representation of a state ��‹

Let us define the state

��� �
1

�p!
��b1

†, . . . ,bN
† ��0� =

1
�p!

�
n

��n b1
†n1

¯ bN
†nN�0� ,

�A11�

where n= �n1 , . . . ,nN� and where the prime on the sum re-
flects the constraint � j=1

N nj = p. The overlap of ��� with the
coherent state �z ; p� is


z;p��� = �
n

��n z̄1
n1
¯ z̄N

nN �A12�

=��z̄1, . . . , z̄N� . �A13�

4. Matrix elements of representation-preserving operators

Next, consider matrix elements of the general repre-
sentation-preserving operator,

T̂K = �
m,n

�Tk,lb1
k1
¯ bN

kNb1
†l1

¯ bN
†lN. �A14�

Here, the prime on the sum indicates the constraint � j=1
N kj

=� j=1
N lj =K. Then,


��T̂K��� =
1

p! �
m,n

k,l

�Tk,l�m
*�n	

j=1

N

��mj + kj�!�mj+kj,nj+lj
� ,

�A15�

where the double prime on the sum indicates constraints on
each of the sums for m, n, k, and l. This may also be com-
puted as an integral over coherent state wave functions:
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� d
�̄�z�TK�z, z̄���z̄� = �
m,n

k,l

�̄mTk,l�n	
j=1

N

zj
mj+kjz̄ j

nj+lj

= �
m,n

k,l

�Im+k
N �̄mTk,l�n	

j=1

N

�mj+kj,nq+ln

=
p!

�N − 1 + p + K�!

��T̂K��� . �A16�

Thus, the general matrix element may be written as


��T̂K��� =
�N − 1 + p + K�!

p!
� d
�̄�z�TK�z, z̄���z̄� ,

�A17�

where TK�z , z̄� is obtained from Eq. �A14� by the substitu-
tions bj→zj and bj

†→ z̄ j.

APPENDIX B: THE LOCAL MEAN FIELD

With the definition of Eq. �59�, I first compute

RN�m� � Q�1� ∧ ¯ ∧ Q�N�

= � �1¯�N� �1¯�N1 − m

N
��1�1

+ mP�1�1

1 �
¯ 1 − m

N
��N�N

+ mP�N�N

N � , �B1�

where

P��
� = ��

� �̄�
� �B2�

is the projector onto subspace spanned by ��. I now system-
atically expand in powers of the projectors and contract over
all free indices. The result is

RN�m� = N!�
j=0

N
ml

j!
1 − m

N
�N−j

.

The local mean field on a j=1 site is given by the expres-
sion in Eq. �61�. Expanding the numerator,

RN�m�h�N�N

N = � �1�2¯�N� �1�2¯�NQ�1�1

�1�
¯ Q�N−1�N−1

�N−1� ,

�B3�

in powers of the projectors, the term of order j is

�N − j − 1�!1 − m

N
�N−j−1

mj��1�2¯�N

���1�2¯�N �
k1 ¯ kj N

P�1�1

k1 P�2�2

k2
¯ P�N−1�N−1

kN−1 .

�B4�

Writing

��1�2¯�N��1�2¯�N = �
��SN

sgn�����1���1�
¯ ��N���N�

,

�B5�

we see that once this is inserted into Eq. �B4�, the only sur-
viving permutations are the identity and the �N−1� two
cycles which include index N. All other permutations result
in contractions of indices among orthogonal projectors, and
hence yield zero. Furthermore, using completeness, we have

�
i=1

N−1

P�N�N

i = ��N�N
− P�N�N

�N� . �B6�

Thus,

��1�2¯�N��1�2¯�N �
k1 ¯ kj N

P�1�1

k1 P�2�2

k2
¯ P�N−1�N−1

kN−1

= N − 1

j
���N�N

− �
k1 ¯ kj N

�
l=1

j

P�N�N

kl

= N − 1

j
���N�N

− N − 2

j − 1
����N�N

− P�N�N

N �

= N − 2

j
���N�N

+ N − 2

j − 1
�P�N�N

N . �B7�

From this expression, I obtain the results of Eqs. �62�–�65�.
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